7 张量运算函数¶
学习目标¶
- 掌握张量相关运算函数
1. 常见运算函数¶
PyTorch 为每个张量封装很多实用的计算函数,例如计算均值、平方根、求和等等
import torch
def test():
data = torch.randint(0, 10, [2, 3], dtype=torch.float64)
print(data)
print('-' * 50)
# 1. 计算均值
# 注意: tensor 必须为 Float 或者 Double 类型
print(data.mean())
print(data.mean(dim=0)) # 按列计算均值
print(data.mean(dim=1)) # 按行计算均值
print('-' * 50)
# 2. 计算总和
print(data.sum())
print(data.sum(dim=0))
print(data.sum(dim=1))
print('-' * 50)
# 3. 计算平方
print(data.pow(2))
print('-' * 50)
# 4. 计算平方根
print(data.sqrt())
print('-' * 50)
# 5. 指数计算, e^n 次方
print(data.exp())
print('-' * 50)
# 6. 对数计算
print(data.log()) # 以 e 为底
print(data.log2())
print(data.log10())
if __name__ == '__main__':
test()
程序运行结果:
tensor([[4., 0., 7.],
[6., 3., 5.]], dtype=torch.float64)
--------------------------------------------------
tensor(4.1667, dtype=torch.float64)
tensor([5.0000, 1.5000, 6.0000], dtype=torch.float64)
tensor([3.6667, 4.6667], dtype=torch.float64)
--------------------------------------------------
tensor(25., dtype=torch.float64)
tensor([10., 3., 12.], dtype=torch.float64)
tensor([11., 14.], dtype=torch.float64)
--------------------------------------------------
tensor([[16., 0., 49.],
[36., 9., 25.]], dtype=torch.float64)
--------------------------------------------------
tensor([[2.0000, 0.0000, 2.6458],
[2.4495, 1.7321, 2.2361]], dtype=torch.float64)
--------------------------------------------------
tensor([[5.4598e+01, 1.0000e+00, 1.0966e+03],
[4.0343e+02, 2.0086e+01, 1.4841e+02]], dtype=torch.float64)
--------------------------------------------------
tensor([[1.3863, -inf, 1.9459],
[1.7918, 1.0986, 1.6094]], dtype=torch.float64)
tensor([[2.0000, -inf, 2.8074],
[2.5850, 1.5850, 2.3219]], dtype=torch.float64)
tensor([[0.6021, -inf, 0.8451],
[0.7782, 0.4771, 0.6990]], dtype=torch.float64)